THE PRODUCT OF NONPLANAR COMPLEXES DOES NOT IMBED IN 4-SPACE

BY

BRIAN R. UMMEL

ABSTRACT. We prove that if K_1 and K_2 are nonplanar simplicial complexes, then $K_1 \times K_2$ does not imbed in \mathbb{R}^4 .

In this paper a proof is given of the following theorem:

THEOREM P. If K_1 and K_2 are finite simplicial complexes neither of which is homeomorphic to a subset of the euclidean plane \mathbb{R}^2 , then their cartesian product $K_1 \times K_2$ is not homeomorphic to any subset of euclidean 4-space \mathbb{R}^4 .

This result answers a question originally posed by Professor Karl Menger in [5]. I wish to thank Professor Joseph Zaks for showing me this problem.

1. Preliminaries. We say a space X imbeds in euclidean n-space \mathbb{R}^n if there is an imbedding (i.e., homeomorphism into) $f: X \to \mathbb{R}^n$. If X imbeds in \mathbb{R}^2 we say that X is planar. For a proof of the following see [4]:

PROPOSITION 1.1. If K is a finite nonplanar simplicial complex then K contains a subspace homeomorphic to one of the following spaces:

- a. K_5^1 , the complete graph on 5 vertices (or, if you prefer, the 1-skeleton of a 4-simplex);
 - b. $K_{3,3}^1$, the join of 2 3-point sets;
 - c. S^2 , the 2-sphere; or
- d. $Q^2 = \{x \in \mathbb{R}^3 : x_3 = 0 \text{ and } x_1^2 + x_2^2 \le 1 \text{ or } x_1 = x_2 = 0 \text{ and } 0 \le x_3 \le 1\}.$

We will henceforth assume that the complexes K_1 and K_2 of Theorem P are chosen from the list of Proposition 1.1, and that we have chosen imbeddings

$$f_1: K_1 \to \mathbb{R}^3$$
 and $f_2: K_2 \to \mathbb{R}^3$.

To clarify notations we recall some standard definitions. Let $\pi = \{1, \tau\}$ be the multiplicative group of order 2. A π -space X is a Hausdorff space together with a fixed point free involution $\tau: X \to X$; this involution defines a free

Received by the editors May 10, 1977.

AMS (MOS) subject classifications (1970). Primary 55A20, 57C35.

Key words and phrases. Imbedding, imbedding class, minimal complex, low-dimensional complex.

 π -action on X and we denote the orbit space of this action by X/π . The natural projection $p: X \to X/\pi$ is then a 2-fold covering. If X and Y are π -spaces then a map $f: X \to Y$ is π -equivariant if $f \cdot \tau = \tau \cdot f$. Homotopies are equivariant if they are π -equivariant at each stage. If K is a Hausdorff space, the deleted product of K is

$$D_2K = \{(x, y) \in K \times K : x \neq y\}.$$

Using the action $\tau(x,y)=(y,x)$, D_2K is a π -space and we denote the orbit space by Σ_2K . Let $S^{\infty}=\operatorname{proj}\lim S^n$ under the natural inclusions and $\tau\colon S^{\infty}\to S^{\infty}$ be the limit of the antipodal maps; set $P^{\infty}=S^{\infty}/\tau$. If K is paracompact there is a π -equivariant map $\hat{k}\colon D_2K\to S^{\infty}$ and any two such maps are π -equivariantly homotopic (cf. [2]). Using the induced map $k\colon \Sigma_2K\to P^{\infty}$ and singular cohomology with Z_2 coefficients we define the *nth* mod-2 *imbedding* class of K by

$$\Phi_2^n(K) = K^*(w^n) \in H^n(\Sigma_2 K; Z_2)$$

where w^n is the nonzero element of $H^n(P^\infty; \mathbb{Z}_2)$, $n \ge 0$. The following is an immediate consequence of the definition.

PROPOSITION 1.2. a. If K and L are paracompact, $f: K \to L$ is an imbedding, and $F: \Sigma_2 K \to \Sigma_2 L$ is the induced map, then $F^*(\Phi_2^n(L)) = \Phi_2^n(K)$. b. For n > 0, $D_2 \mathbb{R}^n$ is π -equivariantly homotopy equivalent to S^{n-1} (with antipodal action); thus $\Phi_2^i(\mathbb{R}^n) \neq 0$ iff $0 \leq i \leq n-1$.

Thus $\Phi_2^n(K) = 0$ is a necessary condition for a paracompact space to imbed in \mathbb{R}^n . In §3 we prove Theorem P by showing that $\Phi_2^4(K_1 \times K_2) \neq 0$. The information we need about the deleted products of K_1 and K_2 is summarized in the following:

PROPOSITION 1.3. If K is one of the four complexes K_5^1 , $K_{3,3}^1$, S^2 or Q^2 of Proposition 1.1, then

- a. $\Phi_2^2(K) \neq 0$;
- b. D_2K is π -equivariantly homotopy equivalent to a closed 2-manifold of genus g, where g=6 if $K=K_5^1$, g=4 if $K=K_{3,3}^1$ and g=0 if $K=S^2$ or Q^2 ;
- c. if $f: K \to \mathbb{R}^3$ is an imbedding and $\hat{F}: D_2K \to D_2\mathbb{R}^3$ is the induced map, then $\hat{F}^*: H^2(D_2\mathbb{R}^3) \to H^2(D_2K)$ is an isomorphism.

PROOF. For a and b see [7] and [8]. For c we have the following commutative diagram whose rows are exact Gysin sequences (where we interpret a 2-fold covering as a 0-sphere bundle cf. [6]):

$$\rightarrow \quad H^{2}\left(\Sigma_{2}\mathbf{R}^{3}\right) \quad \stackrel{p'^{*}}{\rightarrow} \quad H^{2}\left(D_{2}\mathbf{R}^{3}\right) \quad \stackrel{\rho'}{\rightarrow} \quad H^{2}\left(\Sigma_{2}\mathbf{R}^{3}\right) \quad \rightarrow 0$$

$$\downarrow F^{*} \qquad \qquad \downarrow \hat{F}^{*} \qquad \qquad \downarrow F^{*}$$

$$\rightarrow \quad H^{2}\left(\Sigma_{2}K\right) \quad \stackrel{p^{*}}{\rightarrow} \quad H^{2}\left(D_{2}K\right) \quad \stackrel{\rho}{\rightarrow} \quad H^{2}\left(\Sigma_{2}K\right) \quad \rightarrow 0$$

where $F: \Sigma_2 K \to \Sigma_2 \mathbb{R}^3$ is the map induced by \hat{F} . All six groups in the diagram are isomorphic to Z_2 and so ρ and ρ' are isomorphisms. Thus \hat{F}^* is an isomorphism.

Using $[g_1, \ldots, g_n]$ to denote the Z_2 -module with basis $\{g_1, \ldots, g_n\}$ or the zero module if n = 0, we can write

$$H^{0}(K_{1}) = [\omega^{0}], \qquad H^{0}(K_{2}) = [\mu^{0}],$$

 $H^{1}(K_{1}) = [\omega^{1}, \dots, \omega_{\eta}^{1}], \quad H^{1}(K_{2}) = [\mu_{1}^{1}, \dots, \mu_{\sigma}^{1}],$

where η (or σ) is 0, 0, 4, or 6 depending upon whether K_1 (or K_2) is S^2 , Q^2 , $K_{3,3}^1$, or K_5^1 . Here the superscripts denote dimension rather than exponents. If K_1 (K_2) is S^2 or Q^2 we denote $H^2(K_1) = [\omega^2]$ ($H^2(K_2) = [\mu^2]$); otherwise $H^2(K_1) = 0$ ($H^2(K_2) = 0$). We also need to assume that if $\eta \neq 0$ ($\sigma \neq 0$) then the above basis for $H^1(K_1)$ ($H^1(K_2)$) is dual to a basis which satisfies the following:

LEMMA 1.4. If K is a finite 1-dimensional simplicial complex and i: $D_2K \to K \times K$ is the inclusion map, then there is a basis $\{\beta_1, \ldots, \beta_m\}$ for $H_1(K)$ such that if $\beta \in H_2(D_2K)$ then $i_*(\beta) = \sum c_{ij}(\beta_i \times \beta_j)$ where $c_{ij} \in Z_2$, $c_{ii} = 0$ for $i = 1, \ldots, m$ and " \times " denotes cross product.

PROOF. Let $D_2^P(K) = \{(x_1, x_2) \in K \times K : c(x_1) \cap c(x_2) = \emptyset\}$ where $c(x_j)$ is the smallest closed simplex of K containing x_j . Then, by [9], $D_2^P(K)$ is a strong π -equivariant deformation retract of D_2K , and so we can use the inclusion $j : D_2^PK \to K \times K$ instead of i. Let $\{\sigma_1, \ldots, \sigma_{m+n}\}$ be the 1-simplices of K numbered so that $\{\sigma_{m+1}, \ldots, \sigma_{m+n}\}$ form a maximal tree Γ of K. We also use σ_i to denote the linear singular 1-simplex whose image is σ_i ; there is no orientation problem since we are using Z_2 coefficients. For $i = 1, \ldots, m$ set $\beta_i = [\sigma_i + \lambda_i] \in H_1(K_1)$ where λ_i is a sum of simplices of Γ . For i > m we set $\lambda_i = \sigma_i$. Suppose $\beta \in H_2(D_2^PK)$. Then $\beta = [\Sigma k_{ij}(\sigma_i \times \sigma_j)]$ where $k_{ij} \in Z_2$ and $k_{ii} = 0$ for all i. We have

$$\sigma_i \times \sigma_j = (\sigma_i + \lambda_i - \lambda_i) \times (\sigma_j + \lambda_j - \lambda_j)$$

= $(\sigma_i \times \lambda_i) \times (\sigma_i \times \lambda_j) - \lambda_i \times \sigma_i - \sigma_i \times \lambda + \lambda_i + \lambda_j.$

So if $i \neq j$, $\sigma_i \times \sigma_j = (\sigma_i + \lambda_j) + \gamma_{ij}$ where γ_{ij} is a 2-chain of $X \times \Gamma \cup \Gamma \times X$. So $\beta = [\sum k_{ij}(\sigma_i + \lambda_i) \times (\sigma_j + \lambda_j) + \gamma]$ where γ is a 2-chain of $\Gamma \times X \cup X \times \Gamma$. In fact γ is a 2-cycle of $\Gamma \times X \cup X \times \Gamma$ and since $H_2(\Gamma \times X \cup X \times \Gamma) = 0$, $j_*(\gamma) = 0$. Thus $j^*(\beta) = \sum k_{ij}(\beta_i \times \beta_j)$. Thus $\{\beta_1, \ldots, \beta_n\}$ is the desired basis. This proves Lemma 1.4.

LEMMA 1.5. If $K = K_5^1$, $K_{3,3}^1$, S^2 or Q^2 , then the inclusion map $J: D_2K \to K \times K$ induces an isomorphism $j^*: H^1(K \times K) \to H^1(D_2K)$.

PROOF. For $K = S^2$ or Q^2 both groups are trivial. If $K = K_5^1$ or $K_{3,3}^1$ then

by [8] $D_2(CK)$ is π -equivariantly homotopy equivalent to S^3 . So in the exact sequence (cf. [1])

$$\rightarrow H^n(D_2CK) \rightarrow H^n(K) \oplus H^n(K) \xrightarrow{\alpha} H^n(D_2K) \rightarrow H^{n+1}(D_2CK) \rightarrow$$

where $\alpha(u, v) = q_1^*(u) + q_2^*(v)$, $q_i: D_2K \to K$ given by $q_i(x_1, x_2) = x_i$, we have α is an isomorphism if n = 1. Using this and the Künneth Theorem proves Lemma 1.5.

Using Lemma 1.5, Proposition 1.5 and the above bases we have:

$$H^{0}(D_{2}K_{1}) = [\omega^{0} \times \omega^{0}], \quad H^{1}(D_{2}K_{1}) = [\omega^{0} \times \omega_{i}^{1}, \omega_{i}^{1} \times \omega^{0}; i = 1, \dots, \eta],$$
$$H^{2}(D_{2}K_{1}) = [\Omega^{2}],$$

and

$$H^{0}(D_{2}K_{2}) = [\mu^{0} \times \mu^{0}], \quad H^{1}(D_{2}K_{2}) = [\mu^{0} \times \mu_{i}^{1}, \mu_{i}^{1} \times \mu^{0}; i = 1, \dots, \sigma],$$
$$H^{2}(D_{2}K_{2}) = [\Lambda^{2}]$$

where "x" denotes cross product followed by restriction.

For Hausdorff spaces K and L we define

$$\hat{J}_0(K, L) = D_2K \times D_2L, \quad \hat{J}_1(K, L) = D_2K \times (L \times L),$$
$$\hat{J}_2(K, L) = (K \times K) \times D_2L.$$

Using $\tau(x_1, x_2, y_1, y_2) = (x_2, x_1, y_2, y_1)$, $\hat{J}_k(K, L)$ becomes a π -space and we denote the quotient spaces by $J_k(K, L)$ for k = 0, 1, 2.

LEMMA 1.6. If K and L are Hausdorff spaces then $D_2(K \times L)$ is π -equivariantly homeomorphic to $\hat{J}_1(K, L) \cup \hat{J}_2(K, L)$. Moreover, $\{J_1(K, L), J_2(K, L)\}$ is an excisive couple and $J_1(K, L) \cap J_2(K, L) = J_0(K, L)$.

PROOF. Clearly
$$\hat{\varphi}$$
: $D_2(K \times L) \to \hat{J}_1(K, L) \cup \hat{J}_2(K, L)$ defined by $\hat{\varphi}(x_1, y_1, x_2, y_2) = (x_1, x_2, y_1, y_2)$

is a π -equivariant homeomorphism. Since $J_1(K, L)$ and $J_2(K, L)$ are open in their union, the couple is excisive.

For k = 0, 1, and 2 let

$$\hat{J}_k = \hat{J}_k(K_1, K_2), \quad \hat{J}'_k = \hat{J}_k(\mathbf{R}^3; \mathbf{R}^3),$$

 $J_k = J_k(K_1, K_2), \quad J'_k = J_k(\mathbf{R}^3; \mathbf{R}^3),$

and $\hat{F}_k: \hat{J}_k \to \hat{J}_k$, $F_k: J_k \to J'_k$ denote the maps induced by the imbeddings $f_j: K_j \to \mathbb{R}^3, j = 1, 2$. We also have maps

$$\hat{F}: D_2(K_1 \times K_2) \rightarrow D_2(\mathbb{R}^3 \times \mathbb{R}^3)$$

and

$$F: \Sigma_2(K_1 \times K_2) \to \Sigma_2(\mathbb{R}^3 \times \mathbb{R}^3).$$

Finally let $\hat{i}_k: \hat{J}_0 \to \hat{J}_k$ and $i_k: J_0 \to J_k$ be the inclusions for k = 1, 2 and $p_k: \hat{J}_k \to J_k, p_k': \hat{J}_k' \to J_k'$ be the natural projections for j = 0, 1, 2.

LEMMA 1.7. F_0^* : $H^4(J_0) \rightarrow H^4(J_0)$ is an isomorphism.

PROOF. \hat{J}_0' and \hat{J}_0 are π -equivariantly homotopy equivalent to closed 4-manifolds; hence J_0 and J_0' are homotopy equivalent to closed 4-manifolds. Thus in the commutative diagram

$$\begin{array}{ccc} H^4 \big(\hat{J}_0' \big) & \stackrel{\rho'}{\to} & H^4 \big(J_0 \big) \\ \hat{F}_0^* \downarrow & & \downarrow F_0^* \\ H^4 \big(\hat{J}_0 \big) & \stackrel{\rho}{\to} & H^4 \big(J_0 \big) \end{array}$$

where ρ' and ρ are from the appropriate Gysin sequences, and Proposition 1.3.c, F_0^* is an isomorphism. This proves Lemma 1.7.

2. The spectral sequence of a double covering. The proof of Theorem P requires the following in which we use the notation of §1.

LEMMA 2.1. Ker
$$[p_1^*: H^4(J_1) \to H^4(\hat{J_1})] \subseteq \text{Im}[i_1^*: H^4(J_1) \to H^4(J_0)].$$

The proof of Lemma 2.1 requires using the cohomology spectral sequence of a covering (cf. [3]) specialized to the case of a double covering which allows explicit identification of the E_1 -term and the E_1 differential operators. The properties of this spectral sequence are summarized in the following:

PROPOSITION 2.2. If X is a π -space, there is a natural first quadrant E_1 -spectral sequence $\{E_r^{p,q}(X), d_r^{p,q}\}_{r=1}^{\infty}$ convergent to $H^*(X/\pi, Z_2)$ with the following properties:

- a. $E_1^{p,q}(X) = H^q(X; Z_2),$
- b. $d_1^{p,q}$: $E_1^{p,q}(X) \to E_1^{p+1,q}(X)$ is given by $d_1^{p,q}(\alpha) = \alpha + \tau \alpha$ where τ : $H^1(H; \mathbb{Z}_2) = H^1(X, \mathbb{Z}_2)$ is the homomorphism induced by the involution τ : $X \to X$.
- c. For each n there is a natural decreasing filtration $\{F_pH^n(X/n)\}_{p=0}^{\infty}$ of $H^n(X_{\pi}, Z_2)$ such that $F_0H^n(X/\pi) = H^n(X/\pi; Z_2)$, $F_{n+1}H^n(X/\pi) = 0$ and for each $p \ge 0$ there is a natural short exact sequence

$$0 \to F_{p+1}H_n(X/\pi) \to F_pH_n(X/\pi) \xrightarrow{q} E_{\infty}^{p,n-p}(X) \to 0.$$

d. The projection induced map p^* : $H^n(X/\pi; Z_2) \to H^n(X; Z_2)$ is the composition:

$$H^n(X/\pi) = F_0 H^n(X/\pi) \xrightarrow{q} E_{\infty}^{0,n}(X) \subseteq E_1^{0,n}(X) = H'(X).$$

For the remainder of this section and the next we assume all coefficients to be Z_2 and suppress this in the notation.

LEMMA 2.3. If $p \ge 1$ then $d_3^{p,2}$: $E_3^{p,2}(D_2K_1) \to E_3^{p+3,0}(D_2K_1)$ is an isomorphism with $E_3^{p,2}(D_2K_1) = [\Omega^2]$.

PROOF. Using the calculations of §1 and Proposition 2.2.b,

$$E^{p,0}(D_2K_1) = [\omega^0 \times \omega^0], \quad p \ge 0, \quad E_2^{p,1}(D_2K_1) = 0, \quad p \ge 1,$$

$$E_2^{p,2}(D_2K_1) = [\Omega^2], \quad p \ge 0.$$

Thus $E_3^{p,0}(D_2K_1) = E_2^{p,0}(D_2K_1) = [\omega^0 \times \omega^0]$ if $p \ge 3$ and $E_3^{p,2}(D_2K_1) = E_2^{p,2}(D_2K_1) = [\Omega^2]$ if $p \ge 0$. Since $H^n(\Sigma_2K_1) = 0$ if n > 2,

$$d_3^{p,2}: E_3^{p,2}(D_2K_1) \to E_3^{p+3,0}(D_2K_1)$$

must be an isomorphism. This proves Lemma 2.3.

LEMMA 2.4.
$$E_{\infty}^{p,4-p}(\hat{J}_0) = 0$$
 if $p \ge 3$.

PROOF. Using the calculations of §1 and the Künneth formula,

$$H^{0}(\hat{J}_{0}) = [\omega^{0} \times \omega^{0}] \otimes [\mu^{0} \times \mu^{0}],$$

$$H^{1}(\hat{J}_{0}) = [\omega^{0} \times \omega^{0}] \otimes [\mu_{i}^{1} \times \mu^{0}, \mu^{0} \times \mu_{i}^{1}; i = 1, \dots, \sigma]$$

$$\oplus [\omega_{i}^{1} \times \omega^{0}, \omega^{0} \times \omega_{i}^{1}; i = 1, \dots, \eta] \otimes [\mu^{0} \times \mu^{0}],$$

where η and σ are the ranks of $H^1(K_1)$ and $H^1(K_2)$ respectively. Using the diagonal π -action and Proposition 2.2.b

$$E_2^{4,0}(\hat{J}_0) = [\omega^0 \times \omega^0] \otimes [\mu^0 \times \mu^0], \quad E_2^{p,1}(\hat{J}_0) = 0 \quad \text{if } p > 0.$$
 Since $E_2^{2,1}(\hat{J}_0) = 0, E_3^{4,0}(\hat{J}_0) = E_2^{4,0}(\hat{J}_0)$ and

$$\pi_1^*: E_3^{4,0}(D_2K_1) \to E_3^{4,0}(\hat{J}_0)$$

is an isomorphism where $\pi_1 \colon \hat{J}_0 \to D_2 K_1$ is the projection. From the commutative diagram

$$E_3^{1,2}(D_2K_1) \stackrel{\pi^{\uparrow}}{\rightarrow} E_3^{1,2}(\hat{J}_0)$$

$$d_3^{1,2}\downarrow \qquad \qquad \downarrow d_3^{1,2}$$

$$E_3^{4,0}(D_2K_1) \stackrel{\pi^{\uparrow}}{\rightarrow} E_3^{4,0}(\hat{J}_0)$$

and Lemma 2.3, $d_3^{1,2}$: $E_3^{1,2}(\hat{J}_0) \to E_3^{4,0}(\hat{J}_0)$ is surjective. Thus $E_\infty^{4,0}(\hat{J}_0) = E_4^{4,0}(\hat{J}_0) = E_4^{4,0}(\hat{J}_0) = 0$. From above, $E_\infty^{3,1}(\hat{J}_0) = 0$. This proves Lemma 2.4.

LEMMA 2.5. $E_{\infty}^{1,3}(\hat{J}_1) = 0$ and $\hat{\imath}^*$: $E_{\infty}^{2,2}(\hat{J}_0)$ is the zero homomorphism.

PROOF. We first compute $E_2^{p,q}(\hat{J}_1)$ in 3-cases. If $K_2 = K_5^1$ or $K_{3,3}^1$, then

$$H^{1}(\hat{J}_{1}) = [\omega^{0} \times \omega^{0}] \otimes [\mu^{0} \times \mu_{i}^{1}, \mu_{i}^{1} \times \mu_{0}; i = 1, \dots, \sigma]$$

$$\bigoplus [\omega^{0} \times \omega_{i}^{1}, \omega_{i}^{1} \times \omega^{0}; i = 1, \dots, \eta] \otimes [\mu^{0} \times \mu^{0}],$$

$$H^{2}(\hat{J}_{1}) = [\omega^{0} \times \omega^{0}] \otimes [\mu_{i}^{1} \times \mu_{j}^{1}; i, j = 1, \dots, \sigma]$$

$$\bigoplus [\omega^{0} \times \omega_{i}^{1}, \omega_{i}^{1} \times \omega^{0}; i = 1, \dots, \eta]$$

$$\otimes [\mu^{0} \times \mu_{i}^{1}, \mu_{i}^{1} \times \mu^{0}; i = 1, \dots, \sigma]$$

$$\bigoplus [\Omega^{2}] \otimes [\mu^{0} \times \mu^{0}].$$

Using the diagonal π -action on \hat{J}_1 and Proposition 2.2

$$E_2^{p,1}(\hat{J}_1) = 0 \quad \text{if } p > 0,$$

$$E_2^{2,2}(\hat{J}_1) = \left[\omega^0 \times \omega^0\right] \otimes \left[\mu_i^1 \times \mu_i^1; i = 1, \dots, \sigma\right] \oplus \left[\Omega^2\right] \otimes \left[\mu^0 \times \mu^0\right],$$

$$E_2^{1,3}(\hat{J}_1) = 0.$$

If $K_2 = S^2$ and we set $H_2(K_2) = [\mu^2]$ then

$$H^{1}(\hat{J}_{1}) = \left[\omega^{0} \times \omega_{i}^{1}, \, \omega_{i}^{1} \times \omega^{0}; \, i = 1, \dots, \eta\right] \otimes \left[\mu^{0} \times \mu^{0}\right],$$

$$H^{2}(\hat{J}_{1}) = \left[\omega^{0} \times \omega^{0}\right] \otimes \left[\mu^{0} \times \mu^{2}, \, \mu^{2} \times \mu^{0}\right] \oplus \left[\Omega^{2}\right] \otimes \left[\mu^{0} \times \mu^{0}\right].$$

Therefore

$$E_2^{p,1}(\hat{J}_1) = 0 \text{ if } p > 0, \quad E_2^{2,2}(\hat{J}_1) = [\Omega^2 \times \mu^0 \times \mu^0],$$

 $E_2^{1,3}(\hat{J}_1) = 0.$

Finally if $K_2 = Q_2$, then

$$E_2^{p,1}(\hat{J}_1) = 0 \text{ if } p > 0, \quad E_2^{2,2}(\hat{J}_1) = H^2(\hat{J}_1) = [\Omega^2 \times \mu^0 \times \mu^0],$$

$$E_2^{1,3}(\hat{J}_1) = H^3(\hat{J}_1) = 0.$$

In all cases $E_2^{p,0}(\hat{J}_1) = [\omega^0 \times \omega^0 \times \mu^0 \times \mu^0]$. Since $\pi_1^* \colon H^1(D_2K_1) \to H^2(\hat{J}_1)$ is an isomorphism, where $\pi_1 \colon \hat{J}_1 \to D_2K_1$ is the projection, and $E_2^{p,1}(\hat{J}_1) = 0$ if p > 0, we have

$$\pi_1^*: E_3^{p,0}(D_2K_1) \to E_3^{p,0}(\hat{J}_1)$$

is an isomorphism for p > 2. Consider the commutative diagram

$$E_3^{2,2}(D_2K_1) \xrightarrow{\pi_1^*} E_3^{2,2}(\hat{J}_1)$$

$$d_3^{2,2} \downarrow \qquad \qquad \downarrow d_3^{2,2}$$

$$E_3^{5,0}(D_2K_1) \xrightarrow{\pi_1^*} E_3^{5,0}(\hat{J}_1)$$

Using Lemma 2.3, and $\pi_1^*([\Omega^2]) = [\Omega^2 \times \omega^0 \times \omega^0]$ we have

$$d_3^{2,2}([\Omega^2 \times \omega^0 \times \omega^0]) \neq 0.$$

Therefore

$$E_4^{2,2}(\hat{J}_1) = \begin{cases} \left[\omega^0 \times \omega^0 \times \mu_i^1 \times \mu_i^1; i = 1, \dots, \sigma\right] & \text{if } K_2 = K_5' \text{ or } K_{3,3}', \\ 0 & \text{if } K_2 = S^2 \text{ or } Q^2. \end{cases}$$

To show that $\hat{i}^*([\omega^0 \times \omega^0 \times \mu_i^1 \times \mu_i^1]) = 0$, let $\{\alpha_1^1, \ldots, \alpha_\sigma^1\}$ be the basis of $H_1(K_2)$ dual to $\{\mu_1^1, \ldots, \mu_\sigma^1\}$ as in Lemma 1.4 and let α^2 denote the nonzero element of $H_2(D_2K_2)$. If $j: D_2K_2 \to K_2 \times K_2$ is the inclusion, then by Lemma 1.4

$$\langle j^*(\mu_i^1 \times \mu_i^1), \alpha^2 \rangle = \langle \mu_i^1 \times \mu_i^1, j_*(\alpha^2) \rangle = \langle \mu_i^1 \times \mu_i^1, \sum_{j \neq k} c_{jk} (\alpha_j^1 \times \alpha_k^1) \rangle$$

$$= \sum_{j \neq k} c_{jk} \langle \mu_i^1, \alpha_j^1 \rangle \langle \mu_i^1, \alpha_k^1 \rangle = \sum_{j \neq k} c_{jk} \delta_{jk} = 0.$$

Thus $j^*(\mu_i^1 \times \mu_i^1) = 0$. So $\hat{i}^*([\omega^0 \times \omega^0 \times \mu_i^1 \times \mu_i^1]) = 0$. This proves Lemma 2.5.

PROOF OF LEMMA 2.1. By Proposition 2.2.d, if $p_1: \hat{J}_1 \to J_1$ is the natural projection then $p_1^*: H^4(J_1) \to H^4(\hat{J}_1)$ is the composition

$$H^4(J_1) = F^0H^4(J') \xrightarrow{q} E_{\infty}^{0,4}(\hat{J}_1) \subseteq E_1^{0,4}(\hat{J}_1) = H^4(J_1).$$

So using Proposition 2.2.c we have

$$\ker \left[p_1^* \colon H^4(J_1) \to H^4(\hat{J}_1) \right]$$

$$= \ker \left[q \colon F^0 H^4(J_1) \to E_{\alpha}^{0,4}(\hat{J}_1) \right] = F_1 H^4(J_1).$$

By Lemma 2.5, $E_{\infty}^{1,3}(\hat{J}_1) = 0$; thus $F_2H^4(J_1) = F_1H^4(J_1)$. Thus $i_1^*|(\ker p_1^*) = 0$ if and only if $i_1^*|F_2H^4(J_1) = 0$. Now consider the following commutative diagram with exact rows:

$$0 \rightarrow F_3H^4(J_1) \rightarrow F_2H^4(J_1) \rightarrow E_{\infty}^{2,2}(\hat{J}_1) \rightarrow 0$$

$$\downarrow i_1^* \qquad \downarrow i_1^* \qquad \downarrow \hat{i}_1^*$$

$$0 \rightarrow F_3H^4(J_0) \rightarrow F_2H^4(J_0) \rightarrow E_{\infty}^{2,2}(\hat{J}_0) \rightarrow 0$$

By Lemma 2.4, $E_{\infty}^{4,1}(\hat{J}_0) \cong 0$; thus $F_3H^4(J_0) = 0$ and so the projection

$$F_2H^4(J_0) \to E_{\infty}^{2,2}(\hat{J}_0)$$

is an isomorphism. But by Lemma 2.5, \hat{i}_1^* : $E_{\infty}^{2,2}(\hat{J}_1) \to E_{\infty}^{2,2}(\hat{J}_0)$ is zero. Thus \hat{i}_1^* : $F_2H^4(J_1) \to F_2H^4(J_0)$ is zero. This proves Lemma 2.1.

3. Proof of Theorem P. We use the notation of §1 including the assumptions that K_1 and K_2 are complexes selected from the list in Proposition 1.1 and that all coefficients are \mathbb{Z}_2 . We will prove that $\Phi_2^4(K_1 \times K_2) \neq 0$.

Consider first the following commutative diagram in which the rows are the

exact Mayer Vietoris sequences given by Lemma 1.6:

$$\begin{array}{ccc} H^3(J_1') \oplus H^3(J_2') \rightarrow & H^3(J_0') & \stackrel{\delta'^{\bullet}}{\rightarrow} & H^4\left(\Sigma_2(\mathbb{R}^3 \times \mathbb{R}^3)\right) & \rightarrow H^4(J_1') \oplus H^4(J_2') \\ & F_0^{\bullet} \downarrow & F^{\bullet} \downarrow \end{array}$$

$$H^3(J_1) \oplus H^3(J_2) \stackrel{i_1^*+i_2^*}{\rightarrow} H^3(J_0) \stackrel{\delta^*}{\rightarrow} H^4(\Sigma_2(K_1 \times K_2))$$

Since $H^{j}(J_{1}') \cong H^{j}(j_{2}') \cong H^{j}(\mathbb{R}P^{2}) = 0$ for j > 2, δ'^{*} is an isomorphism. Since $\Phi_{2}^{4}(K_{1} \times K_{2}) \neq 0$ if $F^{*} \neq 0$, we have $\Phi_{2}^{4}(K_{1} \times K_{2}) \neq 0$ if $Im(F_{0}^{*}) \not\subset Im(i_{1}^{*} + i_{2}^{*})$.

Now consider the following commutative diagram in which the rows are exact Gysin sequences or sums of Gysin sequences:

Since \hat{J}_0' is π -equivariantly homotopy equivalent to $S^2 \times S^2$, $H^4(\hat{J}_0) \cong H^4(J_0') \cong H^3(J_0') \cong Z_2$ and Δ'^* and ρ' are isomorphisms. By Proposition 1.3, $H^4(\hat{J}_0) \cong H^4(J_0) \cong Z_2$ and by exactness ρ is an isomorphism. By Lemma 1.7, F_0^* : $H^4(J_0') \to H^4(J_0)$ is an isomorphism. Let α be the nonzero element of $H^3(J_0')$. We need to show there do not exist elements $\alpha_1 \in H^3(J_1)$ and $\alpha_2 \in H^3(J_2)$ such that $i_1^*(\alpha_1) + i_2^*(\alpha_2) = F_0^*(\alpha)$. Since $F_0^*(\Delta'^*(\alpha)) \neq 0$, it suffices to show that

$$i_1^*(\Delta_1^*(\alpha_1)) + i_2^*(\Delta_2^*(\alpha_2)) = 0.$$

By exactness and symmetry this follows if we prove

$$\ker \left[p_1^* : H^4(J_1) \to H^4(\hat{J}_1) \right] \subseteq \ker \left[i_1^* : H^4(J_1) \to H^4(J_0) \right].$$

This is exactly what was proven in Lemma 2.1. Thus the proof of Theorem P is complete.

REFERENCES

- 1. A. H. Copeland, Jr., Deleted products of cones, Proc. Amer. Math. Soc. 16 (1965), 496-502.
- 2. D. Husemoller, Fibre bundles, Springer-Verlag, Berlin and New York, 1975.
- 3. S. Mac Lane, Homology, Springer-Verlag, Berlin and New York, 1963.
- 4. S. Mardešić and J. Segal, On polyhedra embeddable in the 2-sphere, Glasnik Mat. Ser. III 1 (21) (1966), 167-175.

- 5. K. Menger, Über plättbare Dreiergraphen und Potenzen nicht plättbarer Graphen, Ergebnisse Math. Kolloq. 2 (1929), 30-31.
 - 6. E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
- 7. B. Ummel, Some examples relating the deleted product to imbeddability, Proc. Amer. Math. Soc. 31 (1972), 307-311.
- 8. _____, Imbedding classes and n-minimal complexes, Proc. Amer. Math. Soc. 38 (1973), 201-206.
- 9. W. T. Wu, A theory of imbedding, immersion, and isotopy of polytopes in a euclidean space, Science Press, Peking, 1965.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MILWAUKEE, WISCONSIN 53201

Current address: Applied Mathematics Group, Energy Technology Applications Division, Boeing Computer Services Company, P.O. Box 24346, Seattle, Washington 98124